Modeling Neutrosophic Data by Self-Organizing Feature Map: MANETs Data Case Study
نویسندگان
چکیده
منابع مشابه
modeling loss data by phase-type distribution
بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...
a study on insurer solvency by panel data model: the case of iranian insurance market
the aim of this thesis is an approach for assessing insurer’s solvency for iranian insurance companies. we use of economic data with both time series and cross-sectional variation, thus by using the panel data model will survey the insurer solvency.
Spirometry Data Classification Using Self Organizing Feature Map Algorithm
In this work the classification of Force Expiratory volume in 1 second (FEV 1) in pulmonary function test is carried out using Spirometer and Self Organizing Feature Map Algorithm. Spirometry data are measure with flow volume spirometer from subject (N=100 including Noramal, and Abnormal) using standard data acquisition protocol. The acquire data are then used to classify FEV1. Self Organizing ...
متن کاملExtended Self - Organizing Map on Transactional Data
In many application domains, transactions are the records of personal activities. Transactions always reveal personal behavior customs, so clustering the transactional data can divide individuals into different segments. Transactional data are often accompanied with a concept hierarchy, which defines the relevancy among all of the possible items in transactional data. However, most of clusterin...
متن کاملMining Biological Data Using Self-Organizing Map
This paper presents a novel method of mining biological data using a self-organizing map (SOM). After partitioning a set of protein sequences using SOM, conventional homology alignment is applied to each cluster to determine the conserved local motif (biological pattern) for the cluster. These local motifs are then regarded as rules for prediction and classification. In the application to the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Computer Science
سال: 2017
ISSN: 1877-0509
DOI: 10.1016/j.procs.2017.11.021